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Using a two-fluid model of gas-fluidized beds, it is shown that periodic plane voidage 
waves travelling against gravity are unstable to perturbations with large transverse 
wavelength. This secondary instability sets in at arbitrarily small amplitudes of the 
plane wave and correspondingly small transverse wavenumbers of the two-dimensional 
perturbation. More precisely, if the bed is wide enough to accommodate sufficiently 
long horizontal waves, then the plane wave becomes unstable as soon as its amplitude 
has grown to the order of the square of the transverse wavenumber. The instability can 
be stationary or oscillatory in nature and has its origin in the interaction between the 
plane wave and four least-stable modes with small transverse wavenumber. Two of 
them represent a pair of bubble-like ‘mixed modes’; the other two are initially, i.e. at 
the onset of the primary wave, pure transverse modes, one consisting only of an 
initially pure vertical velocity perturbation of the state of uniform fluidization. 
Depending on a relation between the eigenvalues of the least-stable modes at the 
primary bifurcation point, either one of these can be the dominant mode, which 
becomes (most) unstable along the growing vertically travelling plane wave. While the 
transverse modes gain longitudinal structure during this process, the mixed modes 
obtain a vertical component of the vertically averaged velocity as well, so that it 
appears that the secondary instability described here is a variant of Batchelor & 
Nitsche’s (1991) ‘overturning’ instability found recently for unbounded stratified 
fluids, see also Batchelor (1993). 

1. Introduction 
The search for and speculation about the origin of bubbles in gas-fluidized beds has 

a long tradition (see e.g. El-Kaissy & Homsy 1976; Didwania & Homsy 1982; 
Needham & Merkin 1984a; Batchelor 1993). As the main instability of the state of 
uniform fluidization is in the vertical direction, giving rise to upwards travelling plane 
waves, it is commonly believed that bubbles appear via a secondary instability due to 
transverse perturbations of these waves. 

In what follows, we shall identify such an instability mechanism by tracking the 
eigenvalues of the least-stable modes from the primary bifurcation point to small but 
finite amplitudes of the plane vertically travelling periodic wave (VTW). By this we 
mean the following: at the primary bifurcation point the largest eigenvalue is zero, 
signalling the onset of the one-dimensional VTW; this eigenvalue is real and counts 
doubly, since we shall be working in a frame moving with the VTW (which affects only 
the imaginary parts of the eigenvalues, and transforms the imaginary parts of the 
critical eigenvalues into zero). Among the infinitely many eigenvalues with negative 
real part there are four (semi-simple, double-counting due to a horizontal-reflectional 
symmetry), which are proportional to - k2, k being the transverse wavenumber, so that 
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they come close to criticality when k becomes small. The corresponding eigenfunctions 
consist of two pure transverse modes with real eigenvalues, and a pair of two- 
dimensional (‘mixed ’) modes, periodic in each direction, with complex-conjugate 
eigenvalues. 

These modes are present in the linear stability problem of the basic state of uniform 
fluidization, but did not receive much attention from previous investigators, 
presumably because they are not responsible for the primary instability. This applies 
particularly to the two transverse modes, which are stable perturbations of the uniform 
state for all wavenumbers, one having the additional ‘disadvantage’ of representing a 
pure velocity perturbation, while the main interest was in the search for voidage non- 
uniformities. However, the transverse modes are necessary to enforce the mixed modes 
by interaction with the primary plane wave. Of course, the opposite interaction of the 
mixed modes with the plane wave also enhances the transverse modes, and it depends 
on the relative magnitude of the eigenvalues of the two transverse modes compared to 
those of the mixed modes at the starting (primary bifurcation) point, which type of 
mode wins the competition and is most responsible for the occurrence of a secondary 
instability. 

The relevance of the mixed modes has been demonstrated previously by the author 
as these become unstable along the uniform state as well, thereby giving rise to two- 
dimensional periodic travelling waves (Goz 1992). Because their bifurcation point 
depends on the transverse wavenumber k,  and lies close to the bifurcation point of the 
VTW for small k ,  it appears natural that these modes also play an important role in 
the instability of the VTW. The significance of the pure transverse perturbations of the 
uniform state for the nonlinear behaviour of fluidized beds, however, is a completely 
novel perception. 

The revealed instability mechanism differs from the idea of Didwania & Homsy 
(1982) concerning a resonant sideband instability, in that it is less the second harmonic 
of the primary wave but mainly the modes with only a transverse structure which feed 
energy into the mixed modes by interacting with the planar wavetrain, and vice versa. 

While the transverse modes exist for non-vanishing transverse wavenumbers k only, 
the considerations mentioned above suggest that the most ‘ dangerous ’ regime will be 
that of small k .  We shall indeed prove that the secondary instability becomes effective 
for VTW amplitudes which are as small as k2, and that then the eigenvalues of the 
disturbance packet are of the same scale. At this stage all the perturbation modes have 
grown into bubble-like mixed modes, with an additional vertical velocity component 
that varies sinusoidally in the horizontal direction. The secondary instability found 
here is therefore similar to the ‘ overturning’ instability for unbounded stratified fluids 
(Batchelor & Nitsche 1991; see also Batchelor 1993), although the details are even 
more involved. 

We consider the reduced model applicable to gas-fluidized beds - and other single- 
and multi-phase flow systems (e.g. Whitham 1974; Needham & Merkin 19846; Kerner 
& Konhauser 1994; Lahey & Drew 1989; Doi & Onuki 1992; Goz 1994) - as described 
in Garg & Pritchett (1975) and Goz (1992), but now formulated in a moving coordinate 
sys tem : 

- a , $ + ~ . [ ( i - $ ) ( U - ~ k ) l =  0, (I.la) 
V-[u-v97($)Vpl = 0, (1.1 b) 

(1.1d) 
Here, V = (az, a,) with z = x - w t  denoting the vertical coordinate, and w being 

F( I -4) [a, U +  (U- wk). VU] = - (1 - 4) k -  Vp - G($) V$ + p ( A  + KVV.) U, ( I .  1 C) 

B(4)  (24 - u) + $Vp = 0. 



Transverse instability of plane wavetrains in gas-fluidized beds 57 

simultaneously the wave velocity and bifurcation parameter; k represents the unit 
vector against gravity, and y the horizontal direction. The dependent variables are gas 
volume fraction or voidage $, particulate-phase velocity u, and effective gas pressure 
p;  the gas velocity u follows from the decoupled equation (1.1 d) .  

The rescaling of spatial coordinates and velocities has been performed using the 
particle radius r and the minimum fluidization velocity uo, respectively. This introduces 
the following parameters : Froude number F = ui/gr ,  Reynolds number R = ps uo YIP,, 
and the viscosity coefficient K = (A, +ps/3)/p,, where g denotes the gravity constant, p, 
the specific density of the particles, and A, and p, the effective volume and shear 
viscosity coefficients of the particulate phase, which here we consider constant. It is also 
convenient to introduce the abbreviation p = F / R .  

In addition, G($) < 0 represents an elasticity modulus corresponding to interparticle 
forces, while the variable coefficient 

is related to the drag force. Although not explicitly needed, the usual Stokes-like form 
of the drag coefficient B($) is employed, where n is the well-known Richardson-Zaki 
exponent describing empirically the expansion of a uniformly fluidized bed. This basic 
state is given by 

0 7 (1.3) 
$ - $ 0 ,  u = O ,  u = u , = ~ ,  V p = p h k ;  p ' - - d = - ( l - $ )  $ 

0 -  
YO 

where the basic voidage value would be given by the relation $:+l = 
9pu,y/[2pu,( 1 --pg/pS)]. Note, however, that in deriving (1.1 d )  terms of the order 
of p,Jp, and pg/+ have been omitted, so that this relation becomes meaningless, i.e. 
$o has to be considered as being prescribed externally. 

Needham & Merkin (1986) were the first to prove rigorously that the base state loses 
its stability to a one-dimensional periodic travelling wave. Recently an extensive 
treatment of vertical and oblique travelling plane waves for gas- and liquid-fluidized 
beds has been presented by Goz (1993 b). The plane vertical travelling waves (VTW) in 
gas-fluidized beds are special stationary one-dimensional solutions of (1.1 a-c), an 
approximation of which will be obtained in 92 by means of an amplitude expansion. 
In $3 the eigenvalue problem for (1.1) linearized at the VTW will be examined. There 
the perturbation variables and the eigenvalues are also expanded with respect to the 
amplitude of the VTW, while the transverse wavenumber of the perturbation is 
considered a fixed parameter. The zeroth-order approximation gives all modes together 
with their eigenvalues, which are present at the primary bifurcation point. It is found 
that there are four least-stable modes (modulo the reflectional symmetry in y ) ,  two 
belonging to a two-dimensional perturbation ('mixed modes ') and two representing 
pure transverse perturbations. The latter are followed up to higher orders in the 
amplitude of the VTW; because this is very formal, only the results are described in 
$3.3, details can be found in the Appendix. The stability boundary cannot be reached 
in this way, but it turns out that the expansion breaks down for very small or very large 
transverse wavenumbers. Appropriate rescalings of the transverse variables with the 
expansion parameter and redesigned expansions, in which the transverse wavenumber 
is now allowed to vary with the amplitude of the VTW, reveal the presence and nature 
of a long-wave instability; this is carried out in $4. At the end of this study we shall 
describe the possible secondary bifurcating solutions using symmetry arguments and 
the knowledge gained about the critical eigenvalue(s). 
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2. Expansion of the one-dimensional solution 

gravity. This solution is determined by the equations (see Goz 1993~1, b) 
First, we must find an approximation to the periodic plane wave travelling against 

(1 - 4 ) ( U - @ )  = - 4 1  -Al), (2.1 a) 

V-hqp’-phq = -phy07 (2.1 b) 

(2.1 c) 

with a prime denoting d/dz, v 5 u, (vY = 0), qo = ~ ( 4 ~ ) .  Thereby, the unknown period 
of the solution has been scaled to 27c, such that the wavenumber h occurs explicitly in 
the above equations ; this has been achieved by the replacement z + z / h .  Additionally, 
PI, has been extracted from p’ before scaling, since it is a constant: 

hF(1-4) ( V - W )  V’ = - Fhw(1 -40) V’ 

= 4 - #o - hp”’ - hG($) 4‘ + ,u( 1 + K )  h2”’, 

(2.2) 

From (2.1) a second-order equation can be derived for q5 alone : 

1 f K  with c=p- .  
1-40 

The other variables follow from 

$ O - #  hp”’ = - p;(qo-q)+w- 
1 - 4 ’  9, l L  40-$1 1-4  

V = W -  

The bifurcating periodic solutions can be determined by expansion in the parameter E 

measuring the amplitude of the wave, in the following manner: 

(2.6) I w = o0+e2w2+ ...) h = hO+€2h2+ ...) 
$J = $0 + €$5O(€), $“€) = + €$2 + €2q53 + . . . , 
v” = my€), YO(€)  = V1 + €V2 + € 2 Y 3  + . . .) 

p”’ = €PO’(€), PO’(€) = p ;  + €p; + 2 p ;  + . . . . 
The equation for each q$ has the form 

where Lo is the self-adjoint operator 
Lo cj4j = (linear +nonlinear terms) [{&, k < j } ]  = Ri ( j  2 1, R, = 0) (2.7) 

With the scalar product in the space of 2n-periodic functions in L2 (actually we know 
from the Hopf bifurcation theorem that the above solution is C2)>, 

1 2n 
( a ,  b )  = %J0 abdz 
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the solvability conditions for (2.7) read 

(Ri,efiz) = 0. (2.10) 

($i,e*iz) = 0 for a l l j  > 1. (2.1 1) 

= O*$, = aei‘+”-’’ (2.12) 

To render the solution unique, the terms of higher order are required to possess no 
parts of the solution of the homogeneous equation ( j  = l),  i.e. 

For $1 

holds, since we are looking for real solutions here. Imposing the further uniqueness 
condition 

(6, eiz) = e L eiz) = 1 (2.13) 

defines the parameter E and determines the phase factor as a = 1. Furthermore we 
obtain 

v1 = --& w0 hop; = a41; (2.14) 
1 - 4 0  

from which wo and A, follow. At the next order, 

L, $2 = ,8& + y(&)’ + &@” ==- 42 = q2 e2iz +p2 c2” + 2vC, (2.16) 

are obtained, where 

A, P’, = 4 2  - P$I (2.17) 

Finally, at order e3 the equation 

(2.19a) 
is obtained, with 

+ Ch,(2w0 h2 +Ao w2),  a2 = - 2Fh0 wo w2,  I w2 a, = 
Yo(1 - $0) 

According to the solvability condition (2.1 l), the terms proportional to eiz and eci2 
must vanish, so that 
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FIGURE 1. The domain in the @ o ,  o,)-plane, in which a primary bifurcation to a plane vertically 
travelling wave is possible. The mean voidage increases in the lower subdomain. Voidage values 
beyond the close-packed limit $,, are not accessible. 

and the complex-conjugate equation determine w 2  and A,. Here, 

(2.20b) 

(2.20c) 

(the last relation corresponds to expression (5.3) for 6 = 0 in Goz 1993b). 
Before we proceed to the investigation of the transverse stability of this solution, we 

want to draw some immediate conclusions from the above relations. First of all, since 
it can be shown (Needham & Merkin 1986) that no periodic solutions of (2.1) exist for 
w < 0, it follows from (2.1 a) that the particle velocity is always smaller than the 
propagation speed of the wave. The situation is less clear for the gas velocity, which 
is given by q5(u - w )  = q5,( 1 - 0). Hence, u < w for w > 1, while u > w if w < 1. We note 
that an upper limit of w exists which may well exceed unity (Goz 1993b). 

Next, we consider the mean values of voidage and particle velocity. From (2.16), 
(2.18) it is seen that the sign of the mean perturbation from the basic voidage value is 
given by the sign of the coefficient P, which for the drag force at hand reads 

Thus the mean voidage increases, if wo < #o + (n + 3) (1 - 40)/2, and decreases 
otherwise. These conditions are constrained by the result (Goz 1993 b) that bifurcations 
of periodic travelling waves may only occur if (lGol/F)1’2 = wo < (n + 2) (1 - 4J ; for an 
illustration see figure 1. The latter relation is just a manifestation of the violation of the 
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stability condition on the basic state and roughly means that the drag force must 
dominate the interparticle forces (cf. Goz 1992). 

Furthermore, (2.17) gives 

which shows that the mean particle velocity is directed downwards, if /3 is not too 
negative. On the other hand, 

which is compatible with the above-mentioned constraint on w0 in the physically 
reasonable range of $,, < (n  + l)/(n + 3) NN 2/3. 

Finally, as it should be, the deviation of the pressure follows exactly that of the 
voidage, as can be seen from (2.17). 

Of course, the discussed behaviour might be altered by larger-amplitude effects. 

3. The eigenvalue problem 
In this Section we formulate the eigenvalue problem, the solution of which 

determines the stability of the one-parameter family of periodic one-dimensional 
waves. The solution is sought in the form of a power expansion of the perturbation 
variables with respect to the amplitude of the plane wave, which is turn is related to the 
bifurcation parameter, in accordance with the expansion (2.6). First this will be done 
for a given wavenumber of the transverse perturbation, which allows us to identify the 
least-stable modes that are the candidates for driving the secondary instability. Two of 
these modes are then followed up to higher amplitudes of the primary wave; because 
this is very technical material, we describe only the results and give the details in the 
Appendix. The singularity of the perturbed eigenvalue for small transverse wave- 
numbers indicates that the expansion breaks down in that region and has to be 
redesigned. This is accomplished by scaling the transverse variables, i.e. transverse 
velocity and wavenumber, with the square root of the amplitude, from which it turns 
out that the eigenvalue scales with the amplitude. The resulting new expansion will be 
carried out in the next section, leading to the ultimate proof of the occurrence of an 
instability . 

3.1. Set-up 
Linearizing (1.1) at (&u",ph +p"') (z, e) leads to a system with periodic z-dependent 
coefficients, so that we may look for a solution of the form 

(3.1) 
Here, we assume that @(z, e), etc., are 27c/h-periodic functions, i.e. we allow only for 
perturbations of the same wavelength. Introducing the scaling of z by h as in the last 
section gives the eigenvalue problem 

- ~ @ + i k ( ~ - ~ ) w + + [ ( l - ~ ) u - ( u " - w ) ~ ~ '  = 0, (3.2a) 
(3.2b) 

(3 .2~)  

M p ,  vy,  V J  = (@, 4, w, 4 (4 eut+iky. 

ikw + AU' + kzq(& q - A [q(qJ) hq' + q/(qJ) (ph + A@') $1' = 0, 
I+( 1 - 6) u-Fw( 1 - $J hu' +FA [( 1 - 6) u- (u"-w) @] 6' 

= @- hq'-h [G(& @]'+p(I + K )  h 2 ~ " - p k z ~  +pKh ikw', 
Fg( 1 - 4) w - Fwh( 1 - $J w' = - ikq - ikG(6) @ + p ~ h  iku' 

+pA'~''-p(l + K ) ~ ' w .  (3.2d) 
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As only V p  has to be periodic, but not necessarily p itself, q' may assume a non- 
vanishing mean value in the one-dimensional case, while qcould be normalized to zero. 
For k =t= 0, however, the equations show that in general q -+ 0, while 4' must vanish. 
Indeed this behaviour can be validated by a general analysis, so that we may write 

- 
q = q f + q  for k + 0 ,  with q = -  q(z)dz and qf= q'= 0. (3 .3)  

Although we shall study (3.2) for arbitrary k, these values will be restricted for finite 

(3.4) 
configurations by 

We notice that owing to a reflectional symmetry in the horizontal direction the 
equations are invariant under the transformation k -f - k, w + - w. Hence, w - k, 
which is also obvious from (3 .2d) .  This means that to each eigenvalue a(k), k =I= 0, 
there belong two eigenfunctions U+, eiky and U-, e-iky, with U-, = U+,(k -+ - k, 
w + - w), such that v depends on k2 only and is a semi-simple, double eigenvalue. The 
total (and real) solution of the linearized equations is then given by the superposition 
of all such solutions of the type ( 3 . 1 ) .  In what follows we compute U+,. 

in 1: 
k = 2ncn/(bed width), n = 0, + 1, + 2 ,  ... . 

According to (2.6) the following expansion is applied: 

( 3 . 5 )  

( 3 . 6 ~ )  

Note that we keep k a fixed, €-independent parameter at this stage. This gives rise to 
the following sequence of problems : 

-a, @j+ik( 1 - $,) wi + A,( 1 - 4,) u; +A, W, @; =f$, 

ikwi + k2yo qj + A, u; - A i q ,  q; --hop; q(, @; = fi, (3.6b) 

- @ ~ + ~ , ~ , ~ ~ + h , q ~ - p ~ ~ , ~ k w ~  = fi, (3 .6~)  

+ikqi+ikGo@i = f,, (3 .6d)  

I 0- = v,+€al+€2v2+ ..., @ = @ o + € @ l + € 2 @ 2 +  ...) 
q = q 0 + q l + E 2 q 2 +  ..., q; - & o  for allj, 

u = U , + € U , + € 2 U 2 +  ...) w = W,+EWI + € 2 W 2 +  ... . 

- 

[Fg,( 1 - 4,) +pk2] uj - Fo, A,( 1 - $,) U; -p( 1 + K )  hi u; 

(Fv0+ck2)(1 - $ o ) w j - F ~ o A o ( l  -4,) wj--,uA,2 ~ ~ - p ~ A , i k u ;  

with fp j-; = f; = f; = o ;  (3.7) 

what is needed from the right-hand sides forjE { 1,2} is given in the Appendix. A single 
equation for @* can be derived by forming hoi3,(3.6c)+ik(3.6d) and making use of 
( 3 . 6 ~ )  and (3.6b), namely 

+PJ'~, + Aoyu' + ikp; = Fi, (3.8 a) 
where KO denotes the operator 

How to then solve (3.6) for the other variables is described in the Appendix. 
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The unique solvability of (3.8) requires of course appropriate orthogonality 
conditions on the right-hand side and on $ j .  These depend on the form of KO and thus 
to some extent on the solution at zeroth order. 

3.2. The zeroth-order terms 
At O(co) the linear stability problem for the uniform state is obtained at the primary 
bifurcation point (wo, A,) : 

Since we admit only periodic perturbations of the same wavelength (and harmonics), 
we take $, - exp (inz), n E (0, f 1, & 2, . . .}, which yields the condition 

= Fo = 0. (3.9) 

I - 2inFAo wo 
1 

Yo(1 - 4 0 )  

+ F w ~ k 2 - i n c A 0 ~ , [ k 2 + ( n 2 - 1 ) A ~ ]  = 0. (3.10) 

Zero eigenvalues occur for k = 0 and n 2 E { 0 ,  l}. For n = 0 one obtains a constant 
perturbation of the uniform state, which can be incorporated into the uniform state 
and thus neglected. (Actually, this is because the basic equations do not determine the 
base state uniquely, which can be fixed by prescribing appropriate two-dimensional 
mean values. Demanding, for example, that the two-dimensional mean values of the 
variables should coincide with those of the one-dimensional periodic solution, forces 
the two-dimensional mean values of the perturbation to vanish. The latter is 
automatically fulfilled for k =k 0, but does not represent any problem for pure one- 
dimensional perturbations either, because in that case u$ = 0 follows from (3.2a), so 
that either the one-dimensional mean value of the voidage perturbation vanishes or the 
perturbation is of neutral stability, regardless of any approximation.) 

The value of n2 = 1 corresponds to $; as the leading approximation to $ = $", 
which is a solution of neutral stability and is not important. The next least-stable 
modes are those with n2c{0, l}  and small values of k2, as can be seen from the 
expansion 

(3.11~) go = b, + b, k2 + O(k4) (k2 4 l), 

-in(n2-1)ch~wo=0, (3.11b) 
1 

Fwi -inch, w, + b, c 
2Fb0 + n2cAi + l/[v0( 1 - $,)I - 2inFA, w, ' 

b =- 
1 (3.1 1 c) 

It shows that the least-stable (non-vanishing) eigenvalues are obtained for b, = 0, i.e. 
n(n2- 1) = 0, and small k2 =k 0, while all other eigenvalues remain an O(1) distance 
away from 0. This picture is complemented by the behaviour go, = - F&c+ O(k-') 
and B,, = - ck2/F+ O(1) for large k2. 

For n = 0 we obtain $o = const. =# 0 as non-trivial solution of (3.9): 

(3.12~) 

?,h0. (3.12b) 
- lB, 1 - UO 

'O = k2Y,( 1 - $,) $0, wo = W - $ 0 >  = Fao( 1 - $,) + pk2 

With regard to the form (3.1) this solution represents a pure transverse mode. 
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FIGURE 2.  Bifurcation scenario with a stationary secondary bifurcation. Solid curves : stable solutions, 
dashed curves: unstable solutions. VTW: vertically travelling plane wave; OTWs: a pair of oblique 
travelling waves; S(')TW : pairs of horizontally symmetric and antisymmetric vertically travelling 
waves with transverse structure. 

Although k2 may be arbitrarily small (corresponding to very wide beds), it must not 
vanish, because otherwise goy?, = 0, hence $, = 0 owing to crouo - Po, so that the 
above solution would cease to exist. Inserting k = 0 formally into (3.12a), it is seen 
that the two branches of (r, start off for small k2 near = 0) = 0 and 
(r,,, 2(k = 0) = - 1 /[Frp,( 1 - qb,)], respectively. As mentioned above, the one nearest to 
zero is of greatest interest. Since the first non-vanishing coefficient of the expansion 
(3.11) is now given by 

-b,(n = 0) = F w i  P?,( 1 - $,) (3.13) 

it has the following series representation for small k2:  

r0,, = -t,k2[1 -V,U - q b , ) ( c - ~ t ~ ) k ~ + u ( k ~ ) i .  (3.14) 

For n2 = 1 we obtain 'mixed modes', the expansion of which starts with 

These modes become unstable when we move along the uniform state by changing w 
(and therefore A), and give rise to a two-dimensional vertically travelling wave and a 
pair of plane oblique travelling waves as described by Goz (1992), cf. figure 2. Because 
their point of bifurcation w(k) tend towards w, = w(0) for k+O, it is very likely that 
they also play a prominent role in the transverse instability of the VTW. 

There exists another pure transverse mode, which is connected to the trivial solution 
$, = 0 of (3.9). It corresponds to pure velocity perturbations of the basic state, as a 
result of which the velocity field is divergence-free: 

$, = O-ikw,+A,ul, = 0. 
In addition, 

(3.16a) 

- - - 
kw, = (rowo = 0, [Fr,(l-q5,)+pk2]Ug = -h,qh, ql, = const. xSlC, , ,  (3.16b) 
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FIGURE 3. An example of the distribution of the least-negative eigenvalues at the primary bifurcation 
point: 0,  one-dimensional mode; 0, two-dimensional (‘mixed’) modes; a, pure transverse modes; 
0, pure transverse perturbation of the vertical velocity;o, one-dimensional second harmonics; x , 
two-dimensional second harmonics. 

while 

so that for non-vanishing fluctuating parts u,,’ or w,,’ 

Again, the least-stable non-trivial mode is found for n = 0 and small k 2 :  

ru 
F(1 - 4 0 )  

($, q, w), = (0, 0,  O), u, = ., * 0, g o  = -lie i; = 

(3.16~) 

(3.16d) 

(3.17) 

Obviously, this represents a perturbation consisting of a purely longitudinal velocity 
depending on the transverse variable only. Modes of type (3.16) have already been 
noticed by Anderson & Jackson (1968), but have not been considered further because 
they do not inherit any voidage perturbation at this stage. 

To sum up, the least-stable modes are (3.12), (3.17), and the mixed modes belonging 
to (3.15) - if the transverse wavelength is large enough. The exact meaning of this 
condition will become clear when we consider the higher-order terms. We anticipate 
that each one or two of these four modes can become unstable along the VTW; 
whether it is the pair of mixed modes or one of the pure transverse modes, that is most 
responsible for the secondary instability, depends on the magnitude of the leading- 
order coefficients i;, and &. The distribution of eigenvalues at the primary 
bifurcation point is sketched in figure 3. 
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3.3. The higher-order terms 

Because the transverse modes are simpler than the mixed modes and certainly 
participate in the generation of a secondary, transverse instability, we follow them up 
to higher orders in the expansion with respect to the amplitude E of the one- 
dimensional wave, thereby keeping the transverse wavenumber k of the perturbation 
a fixed parameter. This involves a good deal of algebra and is therefore given in the 
Appendix. For both modes the result is that the first-order perturbation of the 
eigenvalue vanishes, so that the perturbed eigenvalue is of order e2: 

(3.18) 

The expression for g2 is far too complicated to write down here, but details are given 
in the Appendix (see (A 15) for the mode (3.12) and (A 23) for the mode (3.17)). Now, 
we should look for a range of parameters in which g2 is positive, so that CT has a chance 
to become zero and eventually positive when the amplitude E becomes large enough. 
This, however, cannot be accomplished within the expansion (3.18), as it relies on the 
assumption that the perturbation is much smaller than the leading-order term. On the 
other hand, we are mainly interested in small k2 and it turns out that the perturbation 
of the eigenvalues (3.14) and (3.17) (see (A 16) resp. (A 24)) becomes 

cr2 = c1 kP2 + O( 1) for k2 << 1. (3.19) 

Sample numerical computations for the c1 belonging to (3.14) revealed that its sign 
alters wildly with changing parameters and if it is positive, g2 becomes arbitrarily large 
when k2 approaches zero. This singularity can be ascribed to the fact that the transverse 
modes exist fork + 0 only. But before that can happen, the expansion (3.18) ceases to 
be valid, since e2g2 exceeds -go in the distinguished limit of very long waves and E 

being kept fixed. Recalling that go = - co k2 + O(k4) for small wavenumbers, we see that 
the first two non-vanishing terms in the series (3.18) become of the same order, when 
k2 becomes as small as e, and then the eigenvalue is itself of order E :  

k2 = c 2 ~ + 0 ( e 2 ) = a  = ( ~ - c o c 2 ) ~ + O ( e 2 ) .  (3.20) 

Within this particular scaling it thus becomes possible to reach - and pass - the 
stability limit. However, the eigenvalues will not be given by a simple relation like 
(3.20); instead they have to be determined from an equation of fourth degree arising 
from the interaction between the four least-stable modes identified in the preceding 
section. 

The rest of this section is devoted to ruling out other possible instability mechanisms. 
From the relation (A 15) for the g2 stemming from the mode (3.12) it can be deduced 
easily that g2(g0, z, k2)  = O( 1) for k2 4 1, so that this eigenvalue indeed plays no role in 
the instability problem. However, one might also worry about the short-wave 
behaviour of the modes (3.12) and (3.17). In fact, while it can be read from the 
expressions for r2 given in the Appendix that the perturbed eigenvalue belonging to 

= 0(1) for k2 9 1 is also 0(1) in this limit (see (A 18)) and thus cannot lead to an 
instability, the others are positive and of O(k4), e.g. 

k4 + O(k2),  k2 + 1, 
F( 1 - #o)2 I - ch, + iFuOl2 g 2 , 2  = (3.21) 
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and a very similar expression holds for the cr2 corresponding to the mode (3.17), see 
(A 25). Thus, the first two terms in the expansion (3.18) become of the same order, 
if k - e-’, upon which (T - eP2 + O(1). Employing the scaling k = E/e, (T = 6/2,  and 
accordingly w = G/e transforms the original system (3.2) into the following set of 
equations : 

- 6-1~. + ifG(1- $1 = o(E~) ,  iEG + E ’ J ~ ( $ )  q = 0(e2), 

= o(E~) .  
Expanding f ,  6, G and the other variables as usual with respect to B gives back the 
relations for large k2, i.e. either 6, = - e&F or 6, = -pf:/[F( 1 - $,)I. Hence, there is 
no short-wave instability and we have to be concerned only about the long-wave 
problem, to which we turn now. 

[ F ~ ( I  - $1 +pf2 ]  U - ~ K A  i f+ = o(E~),  [ F ~ ( I  - $1 +p(1+ K )  f2]  

4. The rescaled eigenvalue problem 
In this section we allow the transverse wavenumber of the perturbation to vary with 

the amplitude of the plane wave. This enables us to pass the stability limit and reveal 
the instability mechanism. 

4.1. Resealing 
According to the above results we implement the scaling 

k = e1l2f, w = e1I2G, IJ = €6, (4.1 a) 

and expand these quantities into a power series like the one in (3.5): 

f = k,+ek,+ ..., G = Go+eG1+ ..., 6 = 6,+~6~+... . (4.1 b) 

This corresponds to setting IJ, = 0, so that the contribution from the eigenvalue 
disappears from the left-hand side of the equations (3.6). The same happens to the 
terms proportional to kw, or k2, which are transformed into O(s) terms and thus shifted 
to the right-hand sides. Except for the first term - w,, and the replacement of k with 
k, in the last three terms, the left-hand side of (3.6d) remains unchanged after division 
by Note that the equation for wi decouples from the others, so at each order one 
first solves for the other variables and finally determines w,. How to do that can be read 
off from the appropriately modified formulae given in the first part of the Appendix. 
Distinguishing the modified right-hand sides by a hat as well, the following set of 
equations is obtained : 

-- 6 A; q; = ah, Ijk; + 
PoU-#o) Po’ 

(4.2a) 

(4.2b) 

-Fwo A,(l -#,) U; - cA:(l -go) U; = +,-Ao Go +;-A, q; +p!, 
- Fw, A,( 1 - #,) 6; -PA: G; = - ik, (Go @, + q, -/AKA, lu;) +pi. 

(4.2 c) 

(4.2 d) 

The inhomogeneous terms will be given when they are needed. The single equation for 
-1C., becomes now 
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with the reduced operator 

(4.3 b) 

Averaging the equations (4.2) leads to 

The solvability conditions for (4.3) are given by (Fj ,  e*iz) = 0 for a l l j  > 0 and = 0, 
the latter of which is implied by (4.4). We assume k, + 0, which will give us eigenvalues 
Re Go > 0, thus proving the existence of an instability. 

4.2. The new expansion 
To leading approximation we get Lo $1, = $' = 0 and 

- - - - 
pi = 0, fi = 0, &+pi = 0, iko(Go&+&) =pi. (4.4) 

= 4, = 0, so that 

(4.5a) 

(4.5b) 

is obtained from (4.2a,b), hence (4.2d) gives 

= ~+ikO(8~eiZ+8;e- ' ' ) ,  G i  = (f+ig)@:, 8; = (f-ig)$;, (4.6a) 
with 

At the next order, 

& = $0 $0 - ikO(1 - $0) $0 + AO($l Uo + 0, $J', 
t = - k: To 40 - iko $0 + A: TXA $0 + $1 4;)' + hop; T,a($l @o)', 

(4.7a) 

(4.7b) 

(4.7d) 
f i  = - ~ ~ ( 1 -  $o) +,&I U ,  + ik, PKA, 8; -m0(i - 4 0 ) q ~ ;  - A, G;($~ $,)/, (4.7 c) 

= - (1 - $o) (FG, + cki) 8o - ik, Gh $1 $,, - ikl(qo + Go $, - p A 0  u;). 

The averaged relations (4.4) yield 
- 
+l = tF&o(l- $0) +&I uo, - - 
Go = 0, q l + G o K + G ; a  = 0, 

while the other solvability conditions give 

[$, + (tZ + it3) k3  kc.,' + ih, U, = 0, 

[ ~ , + ( ~ , - i ~ , ) k ~ ] $ ; - i h , ~  = 0. 

(4.8a) 

(4.8 b) 

(4.9a) 

(4.9b) 

Here we refind the coefficients t,,, characterizing the mixed modes of $3, see (3.15). 
At O(s2) we need only the first two relations of the averaged equations (4.4). Taking 

account of & = 40 = 8, = 0 gives us the following relationships between the O(E) 
mean values: 

GoK-ik0(I - $ o ) q + i k o G  = 0, (4.10a) 

k i p o ~ + i k o ~ + k i q ( , ~  = 0. (4.10 b) 

from these two equations and then use (4.8 b) to eliminate 41; this 

- -  

We first eliminate 
leaves us with an expression for &: 
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in which we find the main coefficient of one of the transverse modes, see (3.13), 
(3.14). Inserting ( 4 . 8 ~ )  into (4.1 1) gives another relation between Z,,, $:, and +; in 
addition to (4.9a, b), namely 

(4.12) 
with 

t'l =f+G;,qo(l -$oL t 5  = S+W$ - $ o ) / A o .  (4.13) 

These coefficients are obviously connected to the transverse velocity perturbation and 
appear also in the long-wave expressions for the perturbed eigenvalues of the two 
transverse modes, see (A 16), (A 24a). 

(50 + 61 [eo fX1-  $0) +,&3 Z,, = k: [(& + its) $: + (54 -it,) $;I, 

4.3. The instability mechanism 
The three equations (4.9a), (4.9b) and (4.12) for the three unknowns <, $:, and $; 
possess non-trivial solutions, if and only if the following relations between 2o and ki 
holds : 

(4.14) 

It is important to note that a non-vanishing is decisive for getting a non-trivial 
solution, since otherwise $o = 0 etc. or $o = ko. = 0. This means that the modes 
participating in the generation of the secondary instability consist of (cos z cos (ky), 
sin z cos (ky), cos z sin (ky), sin z sin (ky)} in all perturbation variables plus pure 
transverse modes {cos (ky) ,  sin (ky)}  in the vertical particle velocity. In addition, a short 
calculation based on the linearization of (1.1 d )  shows that the gas velocity behaves 
similarly : 

Thus, averaging the eigenvector with respect to the vertical coordinate leaves only 
a vertical component of the velocity, Ugeiku, which points alternatingly up- and 
downwards when changing horizontal position. The instability evaluated below is 
therefore of 'overturning' type in the sense of Batchelor & Nitsche (1991), see also 
Batchelor (1933). However, the details appear to be rather involved, as can be seen 
from the expressions (4.5) and (4.6) for the eigenvectors, and from (4.9) and (4.12) for 
the coefficients entering them. In general, there will be a phase shift between the 
primary wave and the perturbation. To see this, let us consider a real eigenvalue 50. 
Then Z,, is also real, while Go = ik, G, where G is a real function. To get a real $o, and 
thus a real u,, one has to choose $: = exp (-i0), where 0 is the argument of the 
complex number 5o + (c, + it3) k:. Then $o = 2 cos (z - 0) is obtained, while 
4, = 2 cos z. In addition, the transverse velocity inherits another phase shift: 
@ - cos ( z  - 8'), with 8' += 0. 

Things become even more complicated if the eigenvalue is not real but complex. As 
our main interest lies in the analytical proof of the occurrence of a secondary 
instability, and because a numerical bifurcation analysis has been completed recently, 
we shall not go into more detail here, but instead refer to the work of Glasser, 
Kevrekidis & Sundaresan (1995). Nevertheless, at the end of this paper we shall 
describe the form of the bifurcating solutions using only symmetry arguments and the 
information about the critical eigenvalue(s). 
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Proceeding now with the investigation of (4.14), it is almost immediately seen that 
the limiting behaviour for k;+ co of the four eigenvalues do coincides with that for 
k2+0 of the eigenvalues go of the four least-stable modes identified in section $3.2: 

do,, - -6&, do, ,  - -i%; (4 .16~)  
(4.16b) 

cf. (3.12), (3.17) and (3.15). This has to be so owing to the scaling (4.1), and gives us 
stability for large ki, since ‘$, > 0 is obvious from (3.14), while t2 > 0 can be checked 
from (3.15). Next, we consider the limit of small ki .  For that purpose it is convenient 
to rewrite (4.14) in the form 

with 

2.0;3, - - (E ,  +_ ic3) ki;  k; & 1 ,  

P(2,) 2: + x1 2; k; + xZ 6; kt + x 3  do k6, + x4 k: - x5 2,k: - x6 kt = 0, (4 .17~)  

Obviously, all branches of eigenvalues emanate from the origin ; in the vicinity they 
expand like 

(4.18) 

where the coefficients are determined by 

do = Ak;l3 + Bk; + Ckiol3 + 0(ki413) (k, < l), 

(4.19) 4 . 4 3  - x5) = 0, B(4A3 - x5) = X 6  - x1 A3, 

C(4A3-x5) = -A2(~,+3x1B+6B2).  

There are four solutions for A :  

A ,  = (x5)lj3, A ,  = 0, A3,4 = (- 1 k i  1/3)A1/2, (4.20) 

and these determine the expansion completely. For the further evaluation we note that 
t5 > 0, since g > 0 (cf. (4.6b)) and cp;l > 0 (cf. (2.15); p i  is negative owing to (2.2)). 
Hence x5 > 0, and the same is obviously true for the other coefficients (4.17b) except 
possibly the last one, x6.  But this means A ,  > 0, so that this branch becomes positive, 
while the real part of the third and fourth eigenvalues becomes strongly negative near 
the origin. The real part of the latter pair is therefore unlikely to become positive for 
any value of k, and we shall give more evidence for this below. The second branch 
differs from the others in that certain terms in the expansion (4.18) vanish; it can be 
proved that it behaves as 

d(2) = - 
0 ( X 6 / X 5 ) k ; + 0 ( k 6 , )  (% < l), X S I x 5  = (62‘$5-c364) /65*  (4.21) 

Now, except at the origin, do can vanish only at 

‘ t ,  0 = x 6 / x 4  - $2 6 5  - ‘$3 64, (4.22) 

provided that x6 > 0. In turn, at this ko,o at most one eigenvalue can vanish, 
because the product of the remaining eigenvalues must equal (xs -x3 k:, ,) ki, , = 
(x4 x5 - x 3  x6) k i , 0 / ~ 4 ,  which is in general not zero. In fact, the sign of this number 
determines how an eigenvalue crosses zero : the slope at k,. is given by 

(4.23) 
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FIGURE 4. Typical behaviour of the eigenvalues for the case ,ii + 6, > 25,. Only the real part is shown; 
a merging of two branches indicates that these eigenvalues become a complex-conjugate pair. Sample 
parameters are 6, = 2, [, = 1 ,  ,i = 3, 6, = 1 ,  6, = F(l -$0)/(2A0), hence x1 = 7, x, = 18, x3 = 22, 
X4 = 12, Xs = 1, and (a)  X6 = -1, (b) x 6  = 0.25, (C) x 6  = 1. 

Hence, if x6 is negative, two real positive eigenvalues exist near the origin, a ~k~/~-branch 
and the k2-branch. Because neither one can become zero for any k, =k 0, but tend to 
- co (either on the real axis or in the complex plane), these two branches must merge, 
turn into a pair of complex-conjugate eigenvalues, and as such cross the axis Re C?o = 0 
(cf. figure 4a). For the special case x6 = 0 the scenario is effectively the same, except that 
the k2-branch becomes a k6-branch: 2:) = (x4/x5) k6 + o(k6). If x6 is positive but small, 
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the k2-branch starts off negative from zero, but then turns and crosses the axis 6, = 0, 
before it merges again with the kZi3-branch. This is due to I?;, > 0 for 0 < xs < x4 x 5 / x 3  
(figure 4b). The merging point wanders towards the point (c?,, k,) = (0, k,, ,) and 
x4 x s  - x3 x6 --f 0+, which is indicated by the behaviour c?:, , + 00. For larger values of xs 
the merging of the two branches takes place below the axis, i.e. now it is the primarily 
real and positive kZi3-branch that crosses the line c?, = 0 with a negative slope (figure 
4c). In the last case, there is only one positive (and real) eigenvalue for all k, E (0, k,, ,). 

If the two eigenvalues under consideration stay complex conjugate for k, + 00, they 
must behave as in (4.16b); otherwise they break up again into two real eigenvalues with 
the limiting behaviour (4.16~).  

Before we come to the linkage of the asymptotic behaviour of the various branches, 
we wish to point out that the scenarios described can also be validated by examining 
the polynomial P(6,) defined in (4.17~). One has simply to observe that 

P(0) > 0 o ki > x6/x4, P'(0) > 0 o ki > x5 /x3 ,  P"(0) > 0 for c?, 2 0, 
(4.24) 

and vary xs as above, taking k, as a parameter. Although this consideration yields no 
quantitative information about the behaviour of the various branches for small and 
large k,, it shows clearly that no eigenvalues occur with positive real part other than 
those already found. 

Finally, in order to identify the most unstable mode(s), it is necessary to link the 
behaviour of the different branches for small k, to that for large k,. This has been 
achieved with the help of the symbolic software package Mathematica and lead to the 
results summarized in table 1. It is seen that if the average of the coefficients and C;, 
characterizing the pair of initially pure transverse modes (3.12) and (3.17), is larger 
than the real part of the coefficient C2 of the pair of mixed modes (3.19, then the latter 
is the dominating one and thus responsible for the secondary instability. This is 
conceivable, because in this case the mixed modes are less stable than the combination 
of the transverse modes (in the sense of the leading-order approximation in the 
transverse wavenumber at the onset of the VTW). The possible instability scenarios for 
this case are shown in figure 4(a-c). 

In the opposite case, where 6, +C; < (t2 + it3) + (& -i.&) = 2&, the pair of transverse 
modes dominates over the pair of mixed modes, and the initially least stable of the 
transverse modes develops into the most unstable perturbation of the one-dimensional 
wave. In this case the upper (double) branch of complex-conjugate eigenvalues 
appearing in figure 4 above a certain value of k, breaks up again into two branches of 
real eigenvalues at a larger k,, while the lower branch either represents a pair of 
complex-conjugate eigenvalues with negative real part for all transverse wavenumbers 
as suggested in figure 4(a, b) or breaks up into two real eigenvalues as in figure 4 (c) but 
only for an intermediate range of k,. 

That both cases are possible in principle, can be shown by considering the limits 
w, -+ 0' and wo --z 6. We know (Goz 1993b, see also $2) that primary bifurcations occur 
only for positive wave speeds smaller than d = - $,(l +pb y&/rp,) = ( n  + 2) (1 - #,). 
Since wavelength and wave speed at the onset of the VTW are related by (2.15), we 
can eliminate A: to get 

For small w, this approaches ,ii > 0, while for w , + d  it is reduced to 

,ii -F$,d2 = F[(FR)-' -(n + 2)'#,(1- #,)']. 

(4.25) 
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A , > O  - 5 2  k it, -min (li, 5,) 
A ,  = 0 - 5, T i5, -max G, 5,) 
A , € C  - min 02, El> - 5, f it, 

A,  = 2, -max(li,6,) -5,Ti5, 
TABLE 1. The asymptotic behaviour of the four eigenvalues 2, for small and large ki 

The last expression, obtained using the drag law (1.2), becomes negative for a large 
enough product FR, which can be achieved, for instance, with a small enough particle- 
phase viscosity or a large enough particle diameter. In fact, tracing back the origin of 
the secondary instability to either the mixed mode or one of the transverse modes 
(namely (3.12)), Glasser et a f .  (1995) could validate both scenarios. 

In any case, the influence of the transverse modes is evident from the important 
contribution of a non-vanishing vertical mean value of the vertical velocity, U,, to the 
leading order of the rescaled expansion which otherwise shows mixed-mode behaviour 
in all variables. Such a contribution is present neither in the mixed modes (3.15) nor 
in their O(e)-perturbation, as can be easily deduced from averaging the equations 
(A la-d). Instead it is a characteristic feature of the transverse modes (3.12) and, 
particularly, (3.17). 

5.  Conclusions 
We have followed a one-dimensional periodic vertically travelling wave (VTW) 

solution up to a small amplitude e, and have calculated its linear stability in the vicinity 
of the primary bifurcation point to two-dimensional disturbances of the same 
longitudinal, but large ( N l/eli2) transverse wavelength. The occurrence of a secondary 
instability could be attributed to the interaction of the plane wave with a disturbance 
packet consisting of a pair of mixed (i.e. two-dimensional) modes and two initially pure 
transverse modes. Two scenarios are possible: either the interaction of the plane wave 
with the pair of transverse modes is more efficient in feeding energy into the mixed 
modes and drives one or both of them across the border of stability, or vice versa. 
Which one is realized depends on whether the (negative) sum of the (real) eigenvalues 
of the transverse modes is smaller or larger than the (negative) sum of the (complex- 
conjugate) eigenvalues of the mixed modes, i.e. which pair of modes is less stable at the 
onset of the VTW (cf. (3.13), (3.14), (3.15), (3.17) and table 1 ) .  This should be 
contrasted with our previous finding (Goz 1992) that the mixed modes become 
unstable along the uniform base state as well (where the transverse wavenumber need 
not be small), while the pure transverse perturbations of the uniform state remain 
always stable. 

First, the development of two of the four least-stable perturbation modes has been 
evaluated along the VTW branch for arbitrary finite transverse wavenumbers (namely 
that of the two initially pure transverse modes for relative simplicity). The calculations 
presented in the Appendix show clearly, how the transverse modes develop into mixed 
modes with an additional vertical velocity component, by interaction with the first and 
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second harmonics of the plane VTW. This expansion is not capable of yielding an 
instability, but its breakdown for small (and, less important, large) transverse 
wavenumbers indicates how the transverse variables have to be scaled with respect to 
the amplitude of the VTW. The redesigned expansion include all four perturbation 
modes in like manner, and their interaction with the first harmonic of the VTW 
produces either one or two eigenvalues with positive real part within a certain range of 
transverse wavenumbers, k ~ ( 0 ,  P k , )  say. The scaling of the critical k2 with the 
amplitude means that the narrower the fluidized bed the larger the amplitude to which 
the plane wave can grow without becoming unstable to transverse perturbations, until 
eventually the approximation of the VTW based on the expansion of 92 ceases to be 
valid. 

To state it in another manner, consider a VTW of given amplitude eo. It will be 
(transversally) stable for beds narrower than 27r/(e;/' kc), but lose its stability to the 
described disturbance packet, if the bed can accommodate waves with transverse 
wavenumber ~ i ' ~  k,. Note that because it is proportional to k ,  the horizontal velocity 
scales with the square root of the amplitude, too. The nature of this instability depends 
on the behaviour of the corresponding critical eigenvalues. If they cross the imaginary 
axis as a complex-conjugate pair, the instability sets in as an oscillatory one; if they 
split into two real eigenvalues before crossing, one becoming positive and the other 
staying negative, then a stationary instability will occur. 

In principle, the one-dimensional wavetrain @(z) may undergo a transition either to 
another one-dimensional but now time-dependent solution $(z, t) ,  which would then be 
quasi-periodic in the laboratory frame, or to a two-dimensional pattern. Here we have 
concentrated our investigations on the second case ; the one-dimensional stability has 
been studied by Needham & Merkin (1986) by other means. Performing the analysis 
of 93 for the one-dimensional case (k = 0) would yield an eigenvalue perturbation of 
order e2, the sign of which determines the one-dimensional stability of the VTW 
(because it is a perturbation of the zero eigenvalue). According to the results of 
Needham & Merkin, this will depend on the wavelength of the VTW. However, since 
the pure one-dimensional eigenvalue is of higher order than the others considered here, 
which scale with the amplitude e, the transverse instability should be the dominating 
one (for small amplitudes, that is to say, close to the primary bifurcation point, as 
always in this paper). 

The wave patterns emanating owing to the two types of transverse instability can be 
derived from symmetry arguments (Golubitsky, Stewart & Schaeffer 1985). The 
equations as well as the basic state possess translational symmetries in time and in both 
spatial variables, which are recast into rotational symmetries by looking for solutions 
periodic in time and space (in a vertically moving coordinate system); in the horizontal 
direction an additional reflectional symmetry is present (cf. Goz 1992). Now the VTW 
breaks the rotational symmetry in z only and leaves the horizontal symmetries intact. 
Therefore, the eigenvalues (T of the linearization at a VTW depend on k2 only. For a 
stationary bifurcation from the VTW, i.e. when the largest eigenvalue is real and 
crosses zero at criticality, g,(k,) = 0, the corresponding eigenvectors consist of the set 
(Ukc(z) exp(ik,y), UPkc(z)exp( --ikCy)], where the U+k, are periodic in z = x-wt .  The 
normalization can be chosen such that Ukc has real components except for the 
horizontal velocity component which is purely imaginary, so that Upkc = Ukc (see 
$4.3). This gives the symmetric and antisymmetric combinations 

U&) eikcy + U-,,(z) ePikcy - ((ko, qi, uo) cos (k ,y)) ,  P k C  G~ sin (k ,y)) ,  

-i(UtC(z)eikcy- U -kC ( 4  e-ikcy> - qh, uo) sin ( k , ~ ) ) ,  el/'kc Go cos (key)) 
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at the onset. Complemented by higher-order terms, this yields two branches of quasi- 
stationary two-dimensional waves U(z, y ) ,  which differ only in a phase shift by half a 
period in the horizontal direction. 

For a Hopf bifurcation a, = F is,, so = €1 Im $,(k,2)1 (Re $,(kc) = 0), with the critical 
modes U k E ( Z )  exp (ik, y + is, t ) ,  u-&) exp (- ik, y + is, t )  and their complex conjugates; 
now the components of U+kc are complex periodic functions of z.  Again symmetric and 
antisymmetric combinati6ns can be formed : 

@at( ukceikcY + - U-k,e-ikcY), e-’%t( Ukc e-ikc Y + - eikc y). 
C 

The real combinations of the terms containing either the plus or minus signs lead to 
symmetric and antisymmetric ‘standing travelling waves’ U(z, y ,  t),  i.e. vertically 
travelling waves with horizontally oscillating amplitudes. In addition, we obtain what 
we may call rotating travelling waves of the form 

ukc ei(%t+kcu) + c.c ., Upk, ei(sot-kcy) + C.C. 

Augmented by higher-order terms, this gives a pair of counter-rotating waves with 
respect to y .  In the original coordinate system, these waves travel in both spatial 
directions simultaneously: U+(x,  y ,  t )  = U(x - wt, y +st/k). 

The secondary waves still obey some symmetries, which may be broken in tertiary 
bifurcations. For instance, the quasi-stationary wave could become unstable to a time- 
periodic solution, while the interaction of standing and rotating travelling waves would 
lead to other types of quasi-periodic waves based on three incommensurable 
frequencies, and so on. This analysis, however, is beyond the scope of the present 
contribution. 
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Appendix. The higher-order terms and the perturbed eigenvalues of the 
transverse modes 

Here we evaluate the development of the perturbation modes (3.12) and (3.17), with 
fixed transverse wavenumber k, along the one-dimensional vertically travelling 
periodic wave of $2. 

A. 1. Preliminaries 
In general, the expansion of $3.1 allows the calculation of the remaining physical 
variables from $j and the inhomogeneous terms in the following way. First 

ikwj + A, u; = (a, $j - A, oo $; +j$)/( 1 - 4,) (A l a )  

follows from (3.6a) and, hence, 

follows from (3.6b). Then (3 .6~)  gives 

[Fa,( I - $6,) + pk2] uj - Fw, A,( 1 - 9,) 24; -PA: u; 

= $, - A, Go $; -A, q; + ~ K A ,  (ikw, + A, u;)’ +fi,, (A 1 c) 
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while (3.6d) leads to 

[FgO( 1 - $o) + pk2]  W ,  - Fw, A,( 1 - #o) wj' -phi  w ~ C  

= - ik [Go $j + qj -,UK (ikwj +Ao u;)] +pi. ( A  1 d )  

The mean values of the dependent variables are determined by averaging these 
equations; averaging ( 3 . 8 ~ )  for $j does not then give a new result. At O(s), 

KO$, = F1 (A 2)  

(A 3 4  

(A 3b)  

(A 3 4  

(A 3 4  

is obtained, where according to ( 3 . 8 ~ )  P' is composed of 

f i  = Cl @o + ik$l wo + 4l($l uo + 01 @o>', 

r, = - kZPCp;, $1 40 + 4 d(P; 40 + $1 42' + A0 PA PXQ1 $0>'7 

F u = - F  g1U- $0) uo + Fgo $1 uo - FA0 [(I - $0) uo+ 0 0  $01 u; - A0 GX$1$0)'9 

Pw = -Fcl(l - $o)  wo + Fgo $1 wo -ikGj, $o. 

At this stage we have to determine the zeroth-order mode from which we want to start. 
So let us now choose the pure transverse mode (3 .15)  and follow it up to higher orders 
in s. The description of the fate of the other transverse mode, the pure velocity 
perturbation (3.17), is much shorter and given in 5A.4. 

A.2. The initially pure transverse mode 
First, complementing the considerations in $3.2, we remark that the eigenvalues go of 
( 3 . 1 2 ~ )  are real for all values of k, if 

when this condition is violated, they appear as a complex-conjugate pair for 
k2 E (k2, kt), where 

and this property carries over to the perturbed eigenvalues. To begin with the formal 
derivations, we note that owing to ( 3 . 1 2 ~ )  the first part of the operator KO vanishes, 
such that it contains differential operators of first, second and third orders only. As a 
consequence, the solvability condition for ( 3 . 8 ~ )  is the Fj must not contain any 
constants. This rests on the fact that the only periodic solutions of the homogeneous 
adjoint equation to ( 3 . 8 ~ )  with the side condition ( 3 . 1 2 ~ )  are constants. Moreover, it 
leads to the uniqueness condition that no 1c;. except $o must contain any constants 
either. Thus, we have the two conditions 

- 
Fj = 0, ?jri = 0 for all j >  0. (A 5 )  

Inserting the solution (3.12) into (A 2) gives 

CA; w0 @c.';' -chi go ~y +Ao wo(ch; - 2Fg0 - Ck2) $; = gl A ,  $o + A ,  4, +Ao A ,  $;, 

(A 6) 
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with 

A, = F ( w ~  k2 - ai)/a,, 

A ,  = G;(h,2 + k2)  @, - k2p; qo/po - 2Fw, hi u, - (c"+ ck2) ikw,, 

(A 7 a )  

(A 7b)  

A ,  = - (phpi + a&) +%(Fa, + c"+ ck2) Po - ( E +  ck2) u, + ikFw, w,. (A 7 c)  

The solvability condition requires al A ,  = 0 to hold for arbitrary values of k ,  so that 
a, = 0 is obtained. Taking the averages of equations (A 1 a-d) for j = 1 leads to the 
following relations : 

Li0 1 - 4 0  1 

- 
ik(1-4,)w1 = a , 1 1 ' , + a , ~ = - p o ( ~ - ~ , ~ k 2 ~ ,  (A 8a) 

[Fa,( 1 - $ 0 )  + Pk21 ., = 11', - Fa,( 1 - 4 0 )  u,, 
(Fg,  + ck2) ( 1  - 4,) = - ik(G, & + 41) - Fa,(1 - 40) %, 

(A 8b) 

(A 8c) 

from which again a1 = 0 is deduced. Incorporating the uniqueness condition &= 0 
then yields 

Now, solving (A 6 )  gives 

- - -  
q1 = u1 = w1 = 0. (A 9) 

@, = B, eiz + B, e-'", 

B, = (A ,  + ih, A,)/C,,  B, = (A ,  - ih, A,)/C,, 

C, = chi a. -iho w0(2Fa0 + ck'), C, = C,(i +. - i). 

Then (A l a )  yields the expression 

ikw, + h, u', = D, eiz + D, eciZ, 

D, = a,-ih w B, +L ih (uo -___ 0 0  @,) +% ,I 
1 - 4 0  1 - 4 0  1 - 4 0  

D, = D,(B,+ B,, i+-i, k+-k). 

Because q1 - exp ( f iz), (A 1 b)  gives 

We shall not need u1 in what follows but we shall need wl: 

w, = ik(E, eiz + E, e-"), El = F,/G,, E ,  = FJG,, 

1 
(PO@; + k2) 

G, = F( 1 - 4,) ( a, - iw, A,) + p(hi  + k2) ,  

F, = F, (B ,+B, ,D , - tD , , i - t - i , k - t -k ) ,  G, = G,(i+-i). 



from which we derive an expression for g2: 

As this relation does not seem applicable to a general analysis, its long- and short-wave 
behaviour will be examined. We only mention that in sample numerical evaluations of 
(A 15) it was always found that g, is negative for sufficiently large values of k2,  while 
on the other hand it assumed positive as well as negative values for small k2. 

A.3. Asymptotic considerations 
We evaluate formula (A 15) for small and large k2. It is kept in mind that in these limits 
go is real, hence the eigenfunction U,, is also real (except for the transverse velocity 
which is imaginary) and the coefficients B,, . . . , G, are complex conjugate to B,, . . . , G,. 

A.3.1. The long-wave limit 
An instability seems most likely to occur for small k2,  since (3.14) states that 

go,, - - k2+0-. In this regime, the terms proportional to u, = O ( P )  $,, give the 
dominant contribution, as can be seen from (3.12b). In addition, 

ikw, = O(k2) k0, go = 0(1) $,,; -A, = + O(k2). 
1 

PO(1 - $0) 

Thus, 
A, = - ~ F w ,  A t  U ,  + O(1) $,, A ,  = - c " ~ ,  + 0(1) Po, 

(2F0, A: + ih, ?) u,, + O( 1) $,, 
k2 k2B =-- 
Cl 

where C, = - k2 [c, ch: + iAo wo(c - 2F[,)] + O(k4). Therefore, 

B, = O(kP2) U ,  + O(k-') ~ , ,  
so that the terms - u0 can be neglected with respect to those - B,. Furthermore, 

(1 - $0) D, = &(uo -wo B,) + O(k2) B,+ O( 1) $0, 
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hence, 

while G, = ,uA; - iFw, A,( 1 - 4,) + O(k2). Putting all this together and making use of the 
abbreviations defined in (3.13), (3.15), and (4.13), gives 

(1 + O(k2)) IcA, 6, + iw,(c - 2F5J2 2 $ a, 
2UO 

1 -cA:)-4F2w;]+O(l)$,. ( A  16) 

Q)o(l - 4 0 )  

In addition, 

We are interested mainly in the sign of a2, but since it depends on the various 
parameters in a complicated manner, no general statement appears to be achievable ; 
in particular, the individual terms in (A 16) show opposite behaviour. Note that the 
sign of a, depends on the difference of the leading-order eigenvalues of the two 
transverse modes. 

A.3.2. The short-wave limit 
Considering large k2 we see that a,,, = O(1) and thus u, = O(k-,), qo = O(k?), 

ikw, = O(I), whence C,,, and A ,  are O(k2). Moreover, ,41,2 = O(k2), -k2/A,+ l/c, 
(B, - B,)/k2 + 0. Hence, 

ca, + 2Gkrp" + Gi  + Gh lim [B, + B,  + ck2(E, + E,)] + 2Fw:~"/( 1 - $,). 
k2+m 

Without going into further details, we state that 

showing that in this limit the perturbed eigenvalue tends towards a constant, which 
above all depends on the interparticle pressure. 

A.4. The pure velocity perturbation mode 
The evaluation of the fate of the initially pure velocity perturbation mode (3.17) is very 
similar. Because here $, = qo = w, = 0, u, = const. 4 0, the inhomogeneous terms 
(A 3) simplify greatly: 

On the other hand, we have to deal with the full operator K,, because none of its 
coefficients vanishes. But then the homogeneous adjoint equation K,*$* = 0 has no 
non-trivial periodic solutions, so that no solvability condition has to be satisfied. The 
$* may now assume mean values determined by 

f i  = A,u,4;, fl =A = 0, A = F~,u ,4 ,+FAJ~ ,u ,4 ; .  (A 19) 

where a, is given by (3.17). At O(e) one obtains 2~-periodic solutions with 
$, = q, = w1 = 0,  and al = 0: 

(A 21) 

- -  - 

($, q, u, w),  = ( O , O ,  C, 0) + u, [($, 4,  u, ikw), eiz + (Ijl, q,  u, ikw)- e-'"], 
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where the quantities with the minus index are complex conjugates of those with the plus 
index. The latter follow from the relations 

[al + g,, ch2,- ih, w0(2Fcr0 + ck')] $+ = - 2Fw0 h2, 

1 - chi], (A 22a) 

(A 22 b) 

vo(1 - $0) 

iho 
(k2 + At)  q+ = - 

bhi - iFw, A,( 1 - 950)] u, + ih, (Tw: + 

The value of 
needs only the average expressions at O(c2), which now read 

remains undetermined but is also irrelevant up to order 2. Again one 

-cro&+ik(l -4,)K = i k c ,  

i k 6  + k2vo S, = - k2yh $1 ql, 
__ 

- 
$ 2  = F ( 1 - ~ o ) ~ 2 ~ o - F ~ o ~ - F ~ o U o ~ - F h o ~ o  

(Fg0 + ck2) (I  - $o) K+ i k ( z +  Go K) = Fg,,fi-ikGh m. 
These equations yield the perturbed eigenvalue as 

which behaves in the long-wave limit like 

k2 $ 1, (A 24c) 

(A 24 b) 

Note again that the sign of this g2 depends on the difference of the leading-order 
eigenvalues of both transverse modes; the larger one plays the role described at the end 
of $4  (cf. table 1). The short-wave behaviour is given by 
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